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Abstract With emergencies being, unfortunately, part of our lives, it is crucial to
efficiently plan and allocate emergency response facilities that deliver effective and
timely relief to people most in need. Emergency Medical Services (EMS) allocation
problems deal with locating EMS facilities among potential sites to provide efficient
and effective services over a wide area with spatially distributed demands. It is often
problematic due to the intrinsic complexity of these problems. This paper reviews
covering models and optimization techniques for emergency response facility location
and planning in the literature from the past few decades, while emphasizing recent
developments. We introduce several typical covering models and their extensions
ordered from simple to complex, including Location Set Covering Problem (LSCP),
Maximal Covering Location Problem (MCLP), Double Standard Model (DSM), Max-
imum Expected Covering Location Problem (MEXCLP), and Maximum Availability
Location Problem (MALP) models. In addition, recent developments on hypercube
queuing models, dynamic allocation models, gradual covering models, and coopera-
tive covering models are also presented in this paper. The corresponding optimization
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techniques to solve these models, including heuristic algorithms, simulation, and exact
methods, are summarized.

Keywords Emergency facility location · Modeling and optimization · Mathematical
modeling · Covering model · Genetic algorithm · Tabu search · Simulation

1 Introduction

In the past few decades, the Emergency Medical Services (EMS) systems have drawn a
great deal of attention from researchers. In the EMS systems, response time is a critical
factor when making decisions on the system configurations that affect life or death care.
If the emergency response system cannot provide service promptly, people’s lives are
jeopardized. While the public expects availability of EMS facilities to provide timely
services, this expectation is hard to realize due to limited available resources and other
factors such as stringent governmental budget. Therefore, efficiently locating available
emergency response facilities becomes an important issue.

Most recently, researchers proposed more realistic models for locating and plan-
ning emergency response facilities, including hypercube queuing models, dynamic
models, gradual covering models, and cooperative covering models. However, little
work has been done to summarize the optimization techniques to solve these models.
This motivates us to review covering models, with emphasis on recent developments,
and optimization techniques for emergency facility location and planning from the
mathematical methods and operations research perspective.

Traditionally, emergency facility location problems deal with decisions from two
aspects: which sites should be selected as depots for facilities and how many facili-
ties should be placed in each depot, given demand points and potential facility sites.
Plenty of models have been developed to solve facility location problems. Most of
these models simplify the facility location problems by treating emergency calls gen-
erated from discrete demand points. These models can be divided into three broad
groups: (1) covering models, which emphasize providing coverage for emergency
calls within a predefined distance standard; (2) p-median models, which minimize
the total or average service distance for all demand points; and (3) p-center models,
which aim to minimize the maximum service distance for all demand points. Covering
models are concern with covering demands, and in most covering models, demand
is said to be covered when it can be reached within a predefined distance standard
by at least one facility. However, p-center and p-median models place stress on the
distance between demand points and their nearest facilities. Among the three groups,
the covering models are most prevalent and thus are intensively reviewed in this paper.

According to the literature, the first emergency facility location covering model
was the Location Set Covering Problem (LSCP), proposed by Toregas et al. (1971).
The LSCP is a mandatory covering model and its objective is to find the minimum
number of facilities to cover all demand points. However, full coverage is hard to
achieve in reality due to the limited resources. For a demand point far away from
the others, it probably cannot be covered within the predefined distance standard.
A few years later, the first maximum deterministic covering model was proposed by
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Church and ReVelle (1974), named the Maximal Covering Location Problem (MCLP).
Given a limited number of facilities, this model aims to maximize the demand cover-
age. The LSCP and MCLP have a common shortcoming; once a facility is called for
service, demand points under its coverage are not covered by it any more. In the litera-
ture, there are two strands of research on overcoming this drawback. One is to provide
multiple coverage, such as the Double Standard Model (DSM), proposed by Gendreau
et al. (1997). The DSM aims to allocate facilities among potential sites to provide full
coverage within a longer distance standard while maximizing coverage within a shorter
distance standard. The other strand is to explicitly consider the busy probabilities and
reliabilities of facilities as represented by the Maximum Expected Covering Loca-
tion Problem (MEXCLP) and the Maximum Availability Location Problem (MALP),
proposed by Daskin (1983) and ReVelle and Hogan (1989), respectively.

The strong assumptions in the MEXCLP, such as independent facilities and same
busy probability for all facilities, are relaxed in hypercube queuing models. Hyper-
cube queuing models provide more accurate presentation of real systems. Along with
the development of information technologies, the dynamic allocation models are pro-
posed to solve real time facility location and allocation problems as represented by the
Dynamic Double Standard Model (DDSMt ) and the Dynamically Available Coverage
Location (DACL) model, proposed by Gendreau et al. (2001) and Rajagopalan et al.
(2008), respectively.

Recently, researchers proposed gradual covering models to relax the assumption
that a demand point is covered when it can be reached within a predefined distance
standard by at least one facility. In the literature, various mathematical functions are
proposed to model the gradual decline of coverage along with the increase of the
distance. In some of the covering models, only one facility, namely the nearest one,
determines whether a demand point is covered. The cooperative coverage models,
which study the cooperative behavior of different facilities, are proposed to relax this
“individual coverage” assumption.

Various optimization techniques were developed to solve the proposed models. This
paper reviews three main categories of these techniques: heuristic algorithms, simula-
tion, and exact methods. The common heuristic algorithms used are Genetic Algorithm
(GA), Tabu Search (TS), Lagrangian Relaxation (LR), Simulated Annealing (SA), Ant
Colony Optimization (ACO), and Local Search heuristics. Simulation is usually used
to evaluate the performance of a system or combine it with heuristic algorithms to
provide near optimal solutions. Ambulance location models are mostly formulated
as integer programming problems, and Branch and Bound (B&B) algorithms can be
applied to obtain optimal solutions.

This paper concentrates on the mathematical models and their recent extensions for
EMS facility location and planning, as well as main optimization techniques applied
to these models. For past surveys on facility location problems, one may refer to the
following literatures: Daskin et al. (1988), ReVelle (1989), ReVelle (1991), Schilling
et al. (1993), Daskin (1995), Marianov and ReVelle (1995), Owen and Daskin (1998),
Marianov and Serra (2002), Berman and Krass (2002), Brotcorne et al. (2003), Green
and Kolesar (2004), Goldberg (2004) and Cordeau et al. (2007).
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The rest of this paper is organized as follows: covering models are introduced in
detail in Sects. 2 and 3 reviews the optimization techniques used to solve these models,
and Sect. 4 concludes the review with a discussion of directions for future research.

2 Covering models for emergency facility location and planning

In most of the covering models, a demand is covered if at least one EMS facility
can serve the emergency call within a predefined distance standard. The standard was
specified in the EMS Act of 1973, which required that in urban areas 95% of requests
should be reached within 10 min and in rural areas, calls should be reached within 30
min or less. Because of this Act, covering models are widely used and have been stud-
ied for several decades. Most of these models are well known. We use the following
notations to describe the models.

–V the set of demand points;
–i the index for demand points;

–W the set of potential facility sites;
– j the index for the potential facility sites;

–ti j the distance from demand point i to the facility at site j ;
–r the distance threshold for a demand point to be considered as being covered;

–Wi the set of the facility sites covering demand point i , i.e. { j ∈ Wi |ti j ≤ r}
–di the population size of demand point i ;
–p the total number of available facilities;
–yi binary variable, equal to 1 if and only if demand point i is covered at least once;
–x j binary variable, equal to 1 if and only if a facility is located at site j ;

2.1 Location set covering problem

The Location set covering problem (LSCP) is probably the first emergency facility
location covering model, proposed by Toregas et al. (1971). This mandatory covering
model can be formulated as follows:

LSCP:

min
∑

j∈W

x j (1)

subject to
∑

j∈Wi

x j ≥ 1, i ∈ V (2)

x j ∈ {0, 1}, j ∈ W. (3)

In the formulation above, the objective function (1) minimizes the total number of
facilities required. Constraint (2) specifies that all the demand points must be covered
by at least one facility. Figure 1 illustrates this model with a feasible solution. There
are four potential facility sites and twelve demand points. A demand point is covered
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Fig. 1 An illustration of the LSCP. D1 to D12 are demand points while S1 to S4 are EMS facilities.
A demand point is covered by a facility if the distance between the demand point and the facility is within
r . A feasible solution is given in which S3, S4 cover all the demand points

by a facility as long as that facility can reach the demand point within the distance
standard r . In this illustration, locating facilities at site S3, S4 can cover all the demand
points, hence it is a feasible solution.

The LSCP simplifies the real world EMS facility location problem by treating
the system as static and deterministic. Specifically, the resource is considered unlim-
ited and it is assumed that a facility can serve all EMS requests from its assigned
demand points. However, it is useful on the strategic level to determine the minimum
number of facilities needed to provide full coverage. A variety of models are pro-
posed to relax one or some of the strong assumptions in the LSCP. Aly and White
(1978) studied the problem with the assumption that emergency calls are generated
in a continuous region instead of discrete points. They formulated a model to account
for stochastic response time. Daskin and Stern (1981) proposed a hierarchical ver-
sion of the LSCP (HOSC), with the objective of minimizing the number of facili-
ties providing full coverage within a distance standard first and then maximizing the
number of demand points with multiple coverage. ReVelle and Hogan (1989) for-
mulated a probabilistic version of the LSCP which required all the demand points to
be covered with α reliability level. Ball and Lin (1993) established a new version of
probabilistic LSCP. In their model, the uncovered probability of each demand point
must be below a preset value. Queuing Probabilistic Location Set Covering Problem
(QPLSCP) formulated by Marianov and ReVelle (1994) relaxed the assumption that
servers were operated independently. Shiah and Chen (2007) introduced the Ambu-
lance Allocation Capacity Model (AACM), which integrated the concept of ambulance
service capacity into the LSCP and considered the road condition and the population
distribution.
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2.2 Maximal covering location problem

The maximal covering location model was introduced by Church and ReVelle (1974),
and is known as Maximal covering location problem (MCLP). This model is presented
as follows:

MCLP:

max
∑

i∈V

di yi (4)

subject to
∑

j∈Wi

x j ≥ yi , i ∈ V (5)

∑

j∈W

x j = p (6)

x j , yi ∈ {0, 1}, j ∈ W, i ∈ V . (7)

The objective (4) is to maximize the demand coverage. Constraint (5) guarantees that
demand point i is covered only if one or more facilities are placed within the distance
standard, and constraint (6) specifies that the total number of available facilities equals
p. This model considers the demand size and uses it as the weight of each demand
point in the objective function, which makes the model more realistic. The MCLP
aims to make the best possible use of available limited resources
(Brotcorne et al. 2003).

Eaton et al. (1981, 1985, 1986) successfully applied MCLP to solve the practical
EMS vehicle location problems in Colombia, United States, and Dominican Republic.
Chung (1986) examined the applications of MCLP on other subjects, including data
abstraction, statistical classification, cognitive process modeling, etc.

There are various extensions of the MCLP. Dessouky (2006), Jia et al. (2007a) and
Jia et al. (2007b) studied multiple quality levels and multiple quantities of the facilities
at each quality level for demand points in large scale EMS systems. Their model can
be formulated as:

max
∑

k

∑

i∈V

ckdi yk
i (8)

subject to
∑

j∈W

x j ≤ p (9)

∑

j∈W k
i

x j ≥ Qk
i yk

i i ∈ V, k = 1, . . . , q (10)

x j , yk
i ∈ {0, 1} j ∈ W, i ∈ V, k = 1, . . . , q, (11)

where ck is the importance weighting factor of demand points having the quality level
k. yk

i is a binary variable, equal to 1 if and only if demand point i is covered at qual-
ity level k. W k

i represents the set of the facility sites that can cover demand point
i at quality level k and Qk

i denotes the minimum number of facilities that must be
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allocated to demand point i to achieve k quality level coverage. Jia et al. (2007b) sug-
gested the number of quality levels and Qk

i should be determined by population, the
weighting factor, and the emergency occurrence likelihood at each demand point, due
to the complexity of emergency incidents. The objective of this model is to maximize
demands covered at different quality levels. Constraint (9) specifies the total number
of facilities is less than p. Constraint (10) enforces yk

i to be 0 if there are less than Qk
i

facilities that can cover demand point i at quality level k.
Other extensions of the MCLP found in the literature are summarized as follows.

Several models studied systems in which service is provided by two distinct types
of servers, such as Tandem Equipment Allocation Model (TEAM) (Schilling et al.
1979) and Backup Double Covering Model (BDCM) (Basar et al. 2008). The models
proposed by Hogan and ReVelle (1986) are to maximize the population coverage with
more than two facilities while forcing all demand points to be covered once, known
as Backup Coverage Problem (BACOP1 and BACOP2). Schilling (1980) developed a
dynamic version of MCLP in multi-period context and used a multi-objective approach
to achieve near optimal solution. Alsalloum and Rand (2003) and Alsalloum and Rand
(2006) extended MCLP and developed Goal Programming models. They first deter-
mined locations of facilities to maximize expected demand coverage and then adjusted
the capacity of each station while meeting the minimum performance requirements.
Marianov and Serra (1998) introduced a queuing version of MCLP named the Max-
imal Covering Location-Allocation Problem (MCLAP) with constraints on waiting
time in queue. Erkut et al. (2007) incorporated a survival function into the covering
model and formulated the Maximum Survival Location Problem (MSLP). The sur-
vival function is a monotonic decreasing function, mapping response time to survival
rate. They tested their model by out-of-hospital cardiac arrest emergency.

The LSCP and MCLP have a common drawback. When a facility is called for
emergency services for one demand point, other demand points within its coverage
area will not be covered. The literature devoted to this problem can be divided into
two strands (Daskin et al. 1988): one is to provide additional coverage, such as HOSC,
BACOP1, BACOP2, and DSM (which is to be itroduced next), and the other strand
is to explicitly take into account the busy probabilities of facilities, such as QPLSCP,
MCLAP, MEXCLP and MALP. The last two models will be introduced in Sects. 2.4
and 2.6.

2.3 Double standard model (DSM)

The double standard model (DSM), proposed by Gendreau et al. (1997), uses two
distance standards r1 and r2, (r1 < r2).

DSM:

max
∑

i∈V

di yi2 (12)

subject to
∑

j∈Wi2

x j ≥ 1, i ∈ V (13)
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∑

i∈V

di yi1 ≥ α
∑

i∈V

di (14)

yi2 ≤ yi1, i ∈ V (15)
∑

j∈Wi1

x j ≥ yi1 + yi2, i ∈ V (16)

∑

j∈W

x j = p (17)

x j ≤ p j , j ∈ W (18)

yi1, yi2 ∈ {0, 1}, i ∈ V (19)

x j integer, j ∈ W, (20)

where yi1 and yi2 are binary variables, equal to 1 if and only if demand point i is
covered at least once and twice within r1, respectively; Wi1 and Wi2 represent the
sets of facility sites that can cover demand point i within r1 and r2, respectively. The
objective of the DSM is to maximize the demands that are covered at least twice within
r1. Constraint (13) and (14) express the coverage requirements that all demands must
be covered within r2 and a proportion α of the total demands that must be covered
within r1. Constraint (15) imposes that a demand point cannot be covered twice if it is
not covered at least once. Constraint (15) and (16) together ensure the demand point i
is covered twice only if there are two or more facilities within r1. Constraint (17) and
(18) limit the number of facilities at each facility site. DSM considers the demand size
at each demand point and relaxes the assumption that only one facility can be sited at
each facility site. Figure 2 illustrates the DSM and a feasible solution of this model.
The positions of demand points and potential sites are the same as those in Fig. 1. To
maximize demands covered twice within r1, an additional EMS facility is placed at
site S1.

Doerner et al. (2005) and Doerner and Hartl (2008) developed their models based
on the DSM, augmenting penalty terms to the objective function to avoid unmet cov-
erage requirements and uneven workload. Specifically, for each demand point i , the
workload wi per EMS facility assigned within r2 is computed as wi = di∑

j∈Wi2
x j

. If

the ratio exceeds a given standard w0, a penalty term M(wi − w0) is subtracted from
the objective function. The model can be formulated as follows:

max
∑

i∈V

di yi2 − M1 f1 − M2 f2 − M3 f3 (21)

subject to (15)–(20),

f1 =
∣∣∣∣∣∣

⎧
⎨

⎩i ∈ V :
∑

j∈Wi2

x j = 0

⎫
⎬

⎭

∣∣∣∣∣∣
(22)

f2 = α − min

(
α,

∑
i∈V di yi1∑

i∈V di

)
(23)
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Fig. 2 The illustration of the Double Coverage Facility Location Problem. The positions of demand points
and potential sites are the same as those in Fig. 1. To maximize demands covered twice within r1, additional
EMS facility is placed at site S1

f3 =
∑

i∈V

(wi − w0)
+ (24)

f1 is a modified Eq. 13 to compute the number of uncovered demand points within the
large distance standard r2. f2 is a modified Eq. 14 to compute the differences between
the actual coverage within r1 and the predetermined proportion α. f3 is the penalty
term for facilities workload exceeding a given standard. By assigning different values
of M1, M2 and M3, decision makers can determine the relative importance of these
soft constraints.

2.4 Maximum expected covering location problem (MEXCLP)

In the MEXCLP introduced by Daskin (1983), all facilities are assumed to have the
same busy probability and operate independently. The model can be formulated as
follows:

MEXCLP:

max
∑

i∈V

p∑

k=1

di (1 − q)qk−1 yik (25)

subject to
∑

j∈Wi

x j ≥
p∑

k=1

yik, i ∈ V (26)

∑

j∈W

x j ≤ p (27)

yik ∈ {0, 1}, i ∈ V, k = 1, . . . , p (28)
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x j integer, j ∈ W, (29)

where yik is a binary variable, equal to 1 if and only if demand point i is covered by
at least k facilities. The objective of this model is to maximize the expected coverage
given a limited number of facilities. The left-hand side of constratint (26) represents
the total number of facilities covering demand point i within r , while the right-hand
side is the number of times that demand point i is covered. Since the objective is for
maximization, constraint (26) and (27) will be satisfied as equalities (Brotcorne et al.
2003). As with the DSM, the MEXCLP also allows for more than one facility at one
site. The MEXCLP has two strong assumptions: independent facilities and the same
busy probabilities of facilities. However, in reality, demands are not evenly distributed
temporally and spatially, and thus the busy probability varies from facility to facility.
In the following years, many researchers attempted to relax these assumptions and
built more practical models.

Repede and Bernardo (1994) made some extensions to the MEXCLP to incorpo-
rate temporal varying demands into the model named the TIMEXCLP. Their model,
together with a simulation model, were used to evaluate alternative plans for ambu-
lance deployment in Louisville, Kentucky, and yielded increased coverage from 84%
to 95% and 36% decrease in response time compared to the previous system. The
TIMEXCLP can be formulated as follows:

TIMEXCLP:

max
T∑

t

∑

i∈V

pt∑

k=1

(di,t )(1 − qt )
(

qk−1
t

)
(yik,t ) (30)

subject to
∑

j∈Wi,t

x j,t ≥
pt∑

k=1

yik,t , i ∈ V, t ≤ T (31)

∑

j∈W

x j,t ≤ pt t ≤ T (32)

yik,t ∈ {0, 1}, i ∈ V, k = 1, . . . , p, t ≤ T (33)

x j,t integer, j ∈ W, t ≤ T , (34)

where pt is the number of available ambulances at time period t . qt is the system-wide
busy fraction at time period t for a fleet size of pt . di,t is the demand size generated
at demand point i during time period t . yik,t is a decision variable, equal to 1 if and
only if demand point i is covered by at least k ambulances during time period t covers
demand point i . x j,t is the number of ambulance located at site j during the time
period t . Wi,t is the set of facilities that cover demand point i during the time period
t within r . Equatios (30)–(34) have similar meaning with Eqs. 25–29, respectively.

There are other extensions of the MEXCLP found in the literature. Saydam and
McKnew (1985) used a separable programming approach to reformulate the MEXCLP
into a nonlinear form. Fujiwara et al. (1987, 1988) applied the MEXCLP to locate EMS
in Bangkok and the near optimal solutions obtained from the model were further ana-
lyzed by simulation. Rajagopalan et al. (2007) developed several heuristic algorithms,
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including GA, TS, SA and hybridized hill climbing, to optimize the MEXCLP. The
performance of these algorithms was compared and analyzed using ANOVA. Sorensen
and Church (2010) formulated Local Reliability based MEXCLP (LR-MEXCLP) with
the same objective as the MEXCLP, while incorporating local reliability estimation.

The assumptions in the MEXCLP make models easier to build and solve. However,
they lack an accurate estimation of the expected coverage. Some researchers resorted
to hypercube queuing models to obtain better estimation of the expected coverage.

2.5 Hypercube queuing model

The hypercube queuing model is designed for analyzing the behaviors of a multi-server
queuing system with distinguishable servers. The first hypercube queuing model was
introduced by Larson (1974). In this model, the region under investigation is assumed to
be partitioned into several cells or geographical atoms with a certain fraction of region-
wide workload. In addition, it is assumed the nearest available facility is selected to
dispatch when demands arise. The state of the system is described by facilities status
idle (0) or busy (1). By building equilibrium equations of the steady states, the prob-
ability of each state can be calculated. Thus, performance measures of the system,
such as the loss probability, fraction of dispatches and mean system travel time, can be
easily computed. This decision process is time consuming, especially when the prob-
lem size is large. Larson (1975) proposed an approximation procedure to calculate
performance measures. They claimed that the hypercube model is a special M/M/p
queuing system with a more finely structured state space. The correction factor pro-
posed in this paper has been widely used. The correction factor is developed in the
M/M/p/∞ system. Let q = λ/(pμ) < 1, and Pj denote the steady-state probability
that exactly j severs are busy:

Pj = p j q j/j !P0, j = 1, 2, . . . , p − 1,

Pp = p pq p/p!(1 − q)P0,

P0 = 1

/⎡

⎣
p−1∑

i=0

pi qi/ i ! + p pq p/p!(1 − q)

⎤

⎦ .

They randomly selected the facilities without replacement, and let S j be the event
that exact j servers are busy, Bk denote the event that the kth selected facility is busy,
and Fk denote the event that the kth selected facility is free. The probability that the
(k + 1)th selected server is the first available one is:

P{B1 B2 . . . Bk Fk+1} =
j=p∑

j=0

P
{

B1 B2 . . . Bk Fk+1|S j
}

Pj

=
j=p∑

j=0

P
{

Fk+1|B1 B2 . . . Bk S j
}

P
{

Bk |B1 B2 . . . Bk−1S j
}
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. . . P
{

B1|S j
}

Pj

=
j=p∑

j=0

p − j

p − k

j − (k − 1)

p − (k − 1)
. . .

j − 1

p − 1

j

p
Pj

=
j=p−1∑

j=k

p − j

p − k

j − (k − 1)

p − (k − 1)
. . .

j − 1

p − 1

j

p

p j q j

j ! P0

=
⎡

⎣
j=p−1∑

j=k

(p − k − 1)!(p − j)

( j − k)!
p j

p! q j−k

⎤

⎦ P0

1 − q
qk(1 − q)

= Q(p, q, k)qk(1 − q)

where

Q(p, q, k) =
∑p−1

j=k {(p − k − 1)!(p − j)/( j − k)!} (p j/p!)q j−k

(1 − q)
(∑p−1

i=0 (pi/ i !)qi
)

+ p pq p/p!
,

k = 0, 1, . . . , p − 1 (35)

The busy probabilities of these facilities are the same, equal to q. Assuming the facili-
ties are independent, then the probability that the first available facility is the (k +1)th
is qk(1 − q). Therefore, Q(p, q, k) can be interpreted as a factor which corrects the
independent argument to obtain the exact result.

After the MEXCLP was proposed, researchers endeavored to improve the model in
different directions. One of the directions is to incorporate hypercube queuing theory
since it is suitable for describing multi-server queuing systems and providing abundant
statistics data about the servers and demand points. Batta et al. (1989) proposed the
Adjusted MEXCLP (AMEXCLP), which embedded the hypercube queuing theory
into the MEXCLP and relaxed the assumption of independent busy probability by
using the correction factor derived in Larson (1975). The objective function of the
AMEXCLP can be written as follows:

max
∑

i∈V

p∑

k=1

Q(p, q, k − 1)di (1 − q)qk−1 yik, (36)

note that when the correction factors are equal to 1, the AMEXCLP reduces to the
MEXCLP.

Saydam and Aytug (2003) changed the objective function of the MEXCLP into a
nonlinear form which can be formulated as follows:

max
∑

i∈V

di (1 − q)yi (37)

subject to
∑

j∈Wi

x j = yi , i ∈ V (38)
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∑

j∈W

x j ≤ p (39)

x j , yi integer, j ∈ W, i ∈ V, (40)

where yi denotes the number of times demand point i is covered. Hypercube methodol-
ogy was incorporated into fitness evaluations in a GA. They applied the approximation
of the hypercube model in Jarvis (1985) and used Jarvis’ procedure to determine the
server-location specific busy probabilities. By accomplishing this, Saydam and Aytug
changed the Eq.37 into:

∑

i∈V

di

⎛

⎝1 −
∏

j∈Wi

q j

⎞

⎠ . (41)

Compared with the solutions from Daskin (1983), this hybrid GA can yield better
solutions in reasonable computational time. In addition, they pointed out the empiri-
cal ’optimal’ solutions in Daskin (1983) tended to over or underestimate the coverage
rate.

Besides providing accurate estimation of expected coverage, hypercube queuing
theory was adopted to locate EMS facilities under different situations. Takeda et al.
(2007) used hypercube queuing models to analyze the effects of ambulance decen-
tralization in Campinas, Brazil. They made some assumptions, including independent
Poisson arrivals, independent severs, and fixed dispatching preference. Specifically,
they divided the whole city into five non-overlapping areas and each area was treated
as two atoms for generating basic and advanced requests, respectively. And there were
ten ambulances in the system among which two were advanced ambulances. Demand
rate of each atom and service time were derived from historical data. For each atom,
the dispatching preference of ambulances was fixed. The results of their experiments
showed that as a large number of ambulances were decentralized, the performance
measures of the system, such as the response time and workload, were improved.
However, the total decentralization did not yield satisfactory results. McLay (2009)
proposed the MEXCLP2 to efficiently deploy two types of medical units to serve
multiple types of customers. A hypercube queuing model is developed to analyze the
dependencies between facilities within the same type and dependencies of facilities
among different types.

The first study to investigate the application of hypercube queuing models in the
deployment of EMS facilities on highway is Mendonca and Morabito (2001). They
adopted the model in Larson (1974) and made some changes. Upon an emergency,
the center dispatches the first preference facility if it is available, otherwise the next
facility on this list is dispatched. If the first preference facility and the backup facility
are busy, the call is transferred into other systems. In other words, the call is lost. Their
model successfully reduced the unbalanced workloads. Based on their previous work,
Iannoni and Morabito (2007) considered more complex situation where the calls and
servers were of different types. According to the nature of the calls, different types
and numbers of facilities were dispatched. After that, they embedded their model into
a GA to optimize response areas of each facility in Iannoni et al. (2008). Iannoni
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et al. (2009) optimized not only the districting coverage areas of facilities but also the
facility locations along the highway.

Geroliminis et al. (2004) combined the MCLP and the hypercube queuing the-
ory and formulated the Stochastic Hybrid Queuing Location Model (SHQLM). By
placing p servers among potential sites, this model aims to minimize mean response
time while forcing a minimum predefined level of coverage to be satisfied. Geroliminis
et al. (2006) developed a generalized hypercube model (GHM) in which demands were
temporal and spatial varying and the service time was server and emergency speci-
fied. Other studies on hypercube queuing models for locating EMS facilities include
Larson and Odoni (1981), McKnew (1983), Brandeau and Larson (1986), Burwell
(1986), ReVelle (1989), Goldberg et al. (1990b), Goldberg and Szidarovszky (1991),
Burwell et al. (1993), Zaki et al. (1997), and Chan (2001). For a detailed review of
these models, one may refer to Goldberg (2004).

2.6 Maximum availability location problem (MALP)

Another probabilistic covering location model named the MALP was proposed by
ReVelle and Hogan (1989). There are two versions of the MALP. The MALP-I assumed
that the facilities had the same busy fraction q. However, in the MALP-II, the busy
fraction qi associated with demand point i was computed as the ratio of the total dura-
tion of all calls generated from demand point i to the total availability of all facilities
in Wi . The objective of MALP-I is to maximize the population covered by a facility
within r at α reliability level. Demand point i is covered with reliability α only if

1 − q
∑

j∈Wi
x j ≥ α. Therefore to achieve α reliability coverage, the number of facili-

ties covering demand point i must satisfy
∑

j∈Wi
x j ≥ � log(1−α)

log q � = b The MALP-I
can be formulated as follows:

MALP-I:

max
∑

i∈V

di yib (42)

subject to
∑

j∈Wi

x j ≥
b∑

k=1

yik, i ∈ V (43)

yi,k+1 ≤ yik, i ∈ V, k = 1, . . . , b − 1 (44)
∑

j∈W

x j = p (45)

x j , yik ∈ {0, 1}, j ∈ W, i ∈ V, k = 1, . . . , p (46)

The left-hand side of constraint (43) is the total number of facilities than can cover
demand point i within r , and the right-hand side represents the times of demand point i
being covered and it is less than b. Because the concavity property in the MEXCLP
no longer holds in this model, constraint (44) is required (Brotcorne et al. 2003).
Constraint (45) specifies the total number of facilities equal to p.
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To relax the assumption in the MALP-I that the probability of different servers being
busy are independent, Marianov and ReVelle (1996) proposed the queuing maximal
availability location problem (Q-MALP). In their model, the arrival and service activi-
ties in the neighborhood around i were treated as a M/G/s-loss queuing system. The Q-
MALP used region-specific busy fractions, and the dependence between busy fractions
at a local neighborhood level was allowed. They calculated bi , the smallest number of
facilities that must be located to cover demand point i with reliability α, by the queuing
theory. Let s be the number of servers in the neighborhood, state k of the system be
k servers being busy, λi be the arrival rate in region i , and (1/μi ) be the mean of the
service time for a single server. According to the queuing theory, P[getting into state
k]-P[getting out of state k]= 0, that is: [Pk−1λi +(k+1)μi Pk+1]−[Pkλi +kμi Pk] = 0
for states 1,2,3,…,s, and for state 0 μi P1 − P0λi = 0. Let ρi = λi/μi , then the prob-
ability of all servers being busy is:

Ps = (1/s!)ρs
i

1 + ρi + (1 + 2!)ρ2
i + · · · + (1/s!)ρs

i

.

By determining P1, P2, …Ps , and Ps+1 in sequence, bi is chosen as the smallest value
of k that satisfies Pk ≤ 1 − α.

Galvao et al. (2005) developed the EMALP by integrating hypercube queuing model
into the MALP. The identical servers assumption in the MALP was relaxed. They sug-
gested that it was necessary to identify which server was located at which site. Thus
they changed the decision variable x j into x jk , which is equal to 1 if and only if facility
k is located at site j . In addition, yi is redefined as a binary variable, equal to 1 if and
only if the demand point i is covered with α reliability. This model can be formulated
as follows:

EMALP:

max
∑

i∈V

di yi (47)

subject to

⎡

⎣1 −
p∏

k=1

q
∑

j∈Wi
x jk

k Q

⎛

⎝p, q,
∑

j∈Wi

p∑

k=1

x jk − 1

⎞

⎠ − α

⎤

⎦ yi ≥ 0 i ∈ V

(48)

∑

j∈W

p∑

k=1

x jk = p (49)

yi , x jk ∈ {0, 1}, i ∈ V, j ∈ W, k = 1, . . . , p (50)

Just as MALP, the objective of EMALP is to maximize the population covered with
α reliability. In constraint (48), qk is the workload of facility k;

∑
j∈Wi

x jk equals 1 if
facility k covers demand point k, otherwise 0; Q is the correction factor with the form
of Eq. 35;

∑
j∈Wi

∑p
k=1 x jk is the total number of facilities that can cover demand

point i . This constraint ensures that yi equal 0 if demand point i cannot be covered
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with α reliability. Constraint (49) imposes the total number of facilities sited equal
to p.

2.7 Dynamic allocation and relocation models

Static models are useful in the strategic level but lack the flexibility in the operational
level. While demands vary spatially and temporally, to maximize the coverage of
emergency calls, idle EMS facilities siting in low demand areas are needed to move
to busier areas. In other words, decision makers need to re-deploy facilities to provide
better coverage. As early as the 1970s, Scott (1971) and Wesolowsky and Truscott
(1976) studied dynamic location-allocation facility problems. Later, some research-
ers incorporated temporal and spatial varying demands into their dynamic location
models. Recently, the real time facility redeployment problem was thoroughly stud-
ied and various models were proposed. Maxwell et al. (2009a) classified research on
dynamic allocation problems into three categories: (1) solving the model in real-time
(see Gendreau et al. 2001; Rajagopalan et al. 2005; Rajagopalan and Saydam 2005;
Nair and Miller-Hooks 2006; Rajagopalan et al. 2008), (2) using the optimal facility
position computed in advance (see Gendreau et al. 2006), (3) incorporating system
randomness into the model, either by modeling the problem as a Markov decision
process (see Berman 1981a, b, c; Zhang et al. 2008; Restrepo 2008; Maxwell et al.
2009a, b) or make decisions under particular system configurations (see Andersson
and Vaerband 2007; Andersson 2005).

Gendreau et al. (2001) appears to be the first to consider real time EMS facility
redeployment. Based on their previous work in the DSM, they introduced new vari-
ables and parameters to reflect the dynamic nature of the new model, named DDSMt .
x jk is a binary variable, equal to 1 if and only if facility k is located at site j . Mt

jk
represents the penalty related to the relocation of facility k from its current site to site
j at time t . The problem is solved at each instant t when a request for facility arises.
This model can be written as:

DDSMt :

max
∑

i∈V

di yi2 −
∑

j∈W

p∑

k=1

Mt
jk x jk (51)

subject to
∑

j∈Wi2

p∑

k=1

x jk ≥ 1, i ∈ V (52)

∑

i∈V

di yi1 ≥ α
∑

i∈V

di (53)

yi2 ≤ yi1, i ∈ V (54)

∑

j∈Wi1

p∑

k=1

x jk ≥ yi1 + yi2, i ∈ V (55)

∑

j∈W

x jk = 1, k = 1, . . . , p (56)
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p∑

k=1

x jk ≤ p j , j ∈ W (57)

yi1, yi2 ∈ {0, 1}, i ∈ V (58)

x jk ∈ {0, 1}, j ∈ W, k = 1, . . . , p. (59)

The objective of DDSMt is to maximize the demand covered twice within r1, minus
facilities redeployment cost at time t . Constraint (52) and (53) express the coverage
requirement that all demands must be covered within r2 and a proportion α of the
total demands that must be covered within r1. Constraint (54) imposes that a demand
point cannot be covered twice if it is not covered at least once. Constraint (54) and
(55) together ensure the demand point i is covered twice only if there are more than
two facilities within r1. Constraint (56) ensures that each facility must be placed to
one site. Constraint (57) limited the number of facilities at each site. Note the penalty
coefficients are changed over time. By assigning different values, the second item in
the objective function can restrict the movement of the same facilicy for round or long
trips.

Rajagopalan et al. (2008) developed the Dynamically Available Coverage Loca-
tion (DACL) model for dynamic redeploying facilities to time-varied demands. They
divided the time horizon into clusters based on significant change of demands. The
model incorporates the hypercube theory, wit facilities working independently with
different busy probabilities. In this model, x jk,t is the binary variable, equal to 1 if
and only if facility k is placed at site j at time t ; yi,t is the binary variable, equal to 1
if and only if demand point i is covered with αt reliability at time t ; Wi,t is the set of
facility sites that cover demand point i at time t ; pt is the number of available facilities
at time t ; qk,t is the busy fraction of facility k at time t ; qt is the system-wide busy
fraction at time t ; and dt is the demand size at demand point i at time t . The DACL
model is presented as follows:

DACL:

min
T∑

t=1

∑

j∈W

pt∑

k=1

x jk,t (60)

subject to

⎡

⎣1 −
pt∏

k=1

q

∑
j∈Wi,t

x jk,t

k,t Q

⎛

⎝pt , qt ,
∑

j∈Wi,t

pt∑

k=1

x jk,t − 1

⎞

⎠ − αt

⎤

⎦ yi,t ≥ 0, ∀i, t

(61)∑

i∈V

di,t yi,t ≥ ct , ∀t (62)

x jk,t , yi,t ∈ {0, 1}, ∀i, j, k, t. (63)

Objective (60) minimizes the number of facilities needed. Similar with Eq. 48, con-
straint (61) ensures that yi,t equals 0 if demand point i cannot be covered with αt

reliability at time t . Constraint (62) specifies the lower bound of the demands covered
with αt reliability at time t .
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Gendreau et al. (2006) proposed a model named the Maximal Expected Coverage
Relocation Problem (MECRP) and provided a dynamic relocation strategy for idle
EMS facilities siting in low demand areas. The objective is to maximize the expected
demand coverage with the number of relocated facilities not exceeding a predefined
value. They tested their model in a system where the number of emergency vehicles
was relatively small. The solutions obtained from CPLEX were verified by simulation.

2.8 Gradual coverage model

Most of the covering location models are built based on an assumption that a demand
point is said to be covered if it can be reached by at least one facility within a predefined
threshold. According to this assumption if two demand points A and B are located
right inside and outside the boundaries specified by radius r , respectively, point A is
fully covered while point b is not covered at all, which is not reasonable. The grad-
ual covering models are proposed to relax this “all or nothing” assumption by using
mathematical functions to model the gradual decline of coverage along the increase of
the distance. Figure 3 presents four common coverage decay functions. For a review
on coverage decay functions, one may refer to Eiselt and Marianov (2009).

Karasakal and Karasakal (2004) developed a partial coverage version of MCLP
(MCLP-P) and applied LR to optimize it. They relaxed the “all or nothing” assump-
tion in MCLP by using a sigmoid function (as the one in Fig. 3d) to model the gradual
decline of coverage along with the distance increase. They changed a single distance
threshold into a distance range within which the coverage changed from “covered”
to “not covered”. The intermediate coverage level between full coverage and none
is called partial coverage. The model is formulated based on the classical p-median

C(t)

100%

tr

C(t)

100%

tr3

a b
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100%
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c d
r1 r2
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Fig. 3 The coverage decay functions
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model. The objective is to maximize the demand coverage instead of minimizing the
total distance.The model can be written as follows:

MCLP-P:

max
∑

i∈V

∑

j∈Wi

Ci j zi j (64)

subject to
∑

j∈W

x j = p (65)

∑

j∈Wi

zi j ≤ 1, i ∈ V (66)

zi j ≤ x j , i ∈ V, j ∈ Wi (67)

x j ∈ {0, 1}, j ∈ W (68)

zi j ∈ {0, 1}, i ∈ V, j ∈ Wi , (69)

where zi j equals to 1 if and only if demand point i is partially or fully covered by an
facility at site j, Wi is the set of the facilities sites that can either fully or partially
cover demand point i . If r1 < ti j < r2, Ci j = f (ti j ); if ti j < r1, Ci j = 1; otherwise,
Ci j = 0. f (ti j ) is a sigmoid function, and r1 and r2 are the lower bound and the upper
bound of the distance range, respectively. The objective of MCLP-P is to maximize
the coverage level. Constraint (65) specifies that total p facilities are to be placed.
Constraint (66) requires that a demand point will be covered at most once. If there is
more than one facility site that can cover demand point i , the one that can provide the
maximal coverage will be chosen. This constraint is derived from the p-median model,
in which the closest facility is selected to provide service. Constraint (67) forces all
z′

i j s associated with facility site j to be 0 if no facility is placed at site j . MCLP-P
does not take the population size of the demand point into consideration.

Drezner et al. (2010) pointed out that the previous gradual coverage model may
not be the correct approach in many situations. They proposed a stochastic gradual
coverage model in which the short and long distance standards, i.e., r1 and r2, are
random variables. They claimed that this generalization is suitable to address settings
where customers are heterogeneous and their sensitivity for the distance standard r1
and r2 are different. It is assumed that distributions of r1 and r2 are known, denoted as
φr1 and φr2 and the coverage declined linearly along with the increase of the distance
(as in Fig. 3c). They developed the expected coverage at distance t as:

c(t) = Pr(r1 ≥ t) +
t∫

0

∞∫

t

z − t

z − y
φr1(y)φr2(z)dzdy

The objective of the model is to maximize the coverage, which is formulated as∑
i∈W di c(ti ), where ti is the distance between demand point i and its closet facility.

123



300 X. Li et al.

2.9 Cooperative coverage model

In some of the covering models discussed above, only one facility (namely the clos-
est one) determines whether a demand point is covered or not. Berman et al. (2010)
pointed out that this individual assumption might lead to solutions that require more
facilities to cover the same amount of demands. They proposed the following cov-
erage mechanism: each facility at site j emits a “signal” that decays over distance
according to a function φ(t) ( which is similar to the decay function in the gradual
covering models). A demand point i receives signals from all facilities and is covered
only if the “signal” it receives exceeds a certain threshold, i.e.,

∑
j∈W φ(ti j ) ≥ A. The

summation is referred to as the aggregation operator in their paper, and researchers
should choose appropriate aggregation operators to represent the cooperative behav-
ior of facilities in different systems. Berman et al. (2010) formulated the Cooperative
Location Set Covering Problem (CLSCP) and the Cooperative Maximum Covering
Location Problem (CMCLP). The objective functions and constraints in the two mod-
els have similar meaning to that in the LSCP and the MCLP, respectively. Therefore
we present the two models without further explanations.

CLSCP:

min
∑

j∈W

x j (70)

subject to
∑

j∈W

φ(ti j )x j ≥ A, i ∈ V (71)

x j ∈ {0, 1}, j ∈ W. (72)

CMCLP:

max
∑

i∈V

di yi (73)

subject to
∑

j∈W

φ(ti j )x j ≥ Ayi , i ∈ V (74)

∑

j∈W

x j = p (75)

x j , yi ∈ {0, 1}, j ∈ W, i ∈ V . (76)

3 Optimization techniques

In this section, the heuristic algorithms, simulation techniques, and exact methods used
to solve EMS facility location models are presented. Heuristic algorithms are broadly
used to solve large scale problems. Simulation models are developed either to vali-
date solutions obtained from heuristic algorithms or to combine with other techniques
to improve the quality of solutions. B&B is efficient on solving small size prob-
lems since most of the problems are formulated as integer programming. Section 3.1
describes some main heuristic algorithms, including GA, TS, LR and other heuristics.
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Section 3.2 presents the application of simulation. Section 3.3 briefly reviews the exact
methods developed in literature.

3.1 Heuristics

Table 1 summarizes the main heuristic algorithms for various EMS facility location
models.

Table 1 Heuristic methods for EMS facility location models

Models Optimization techniques References

LSCP GA Aickelin (2002)

Non-unicost LSCP GA Beasley and Chu (1996)

MCLP LR Galvao and ReVelle (1996)

MCLP TS Diaz and Rodriguez (1997)

MCLP with partial coverage LR Karasakal and Karasakal (2004)

MCLP with multiple quantity GA Jia et al. (2007b)

Requirement at different LR

Quality level Locate-allocate

Extension of MCLP Goal programming Alsalloum and Rand (2003)

Extension of MCLP Goal programming Alsalloum and Rand (2006)

DSM TS Gendreau et al. (1997)

DSM with penalty term to TS Doerner et al. (2005)

the objective function

MEXCLP Hypercube embedded GA Saydam and Aytug (2003)

MEXCLP GA with local search Aytug and Saydam (2002)

MEXCLP GA Rajagopalan et al. (2007)

TS

SA

Hybrid hill-climbing

Extension of MEXCLP SA Galvao et al. (2005)

and MALP

Deployment on highway Hypercube embedded GA Iannoni and Morabito (2007)

with partial backup and

multi-dispatching

Same model with above Hypercube embedded GA Iannoni et al. (2009)

with local search

DDSMt Parallel TS Gendreau et al. (2001)

DACL Reactive TS Rajagopalan et al. (2008)

Multi-objective covering- Fuzzy goal programming Araz et al. (2007)

based vehicle location model

Maximum covering model GA Jaramillo et al. (2002)
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3.1.1 GA

GA is one of the most widely used heuristic approaches. Known as an intelligent
probabilistic search algorithm, GA has been applied to a wide range of optimization
problems. According to the principles of natural selection and survival of the fittest,
genes from the highly fit individuals will pass on to an increasing number of individ-
uals in each successive generation, which results in more fit offspring. In other words,
species evolve to become better adapted to their environment (Beasley and Chu 1996).

Beasley and Chu (1996) seem to be the first to apply GA for covering model.
Several techniques, including a crossover-fusion operator, variable mutation rate, and
a heuristic feasibility operator, were proposed to improve the performance of their
algorithm. For small size instances, their algorithm can generate optimal solutions.
For large size instances, it can provide near optimal solutions.

Aickelin (2002) used GA to solve the set covering problem. The algorithm splits
search into three distinct phases. First, it specifies permutation and other parameters.
Second, it uses diversity information to improve the solution. Finally, solutions are
post-optimized using a hill-climber heuristic method.

Inspired by Beasley and Chu (1996) and Aytug and Saydam (2002) applied GA to
solve the MEXCLP. The performance of their algorithm was compared with that of
CPLEX and Daskin’s heuristics. The results showed that GA with Local Search heuris-
tics was robust and yielded satisfactory solutions in a reasonable computational time.
They provided two techniques for generating the initial population and five crossover
operators, then conducted experiments to compare their performance. It demonstrated
that GA with ambulance swap crossover operator and random initialization overrode
others. The experimental results showed that at least one of their GAs provided optimal
or near optimal solutions. Their GA was improved by embedded hypercube queuing
model in Saydam and Aytug (2003).

Jaramillo et al. (2002) built a GA similar to the one in Beasley and Chu (1996).
Their algorithm was tested on two standard data sets. The solutions obtained from
their GA were slightly better, compared with a Lagrangian heuristic followed by a
substitution procedure. Jia et al. (2007b) used GA to solve their multi-quantity-qual-
ity model. In order to generate good-quality solutions and expedite the convergence
of their GA, they applied a greedy process in the individual initialization phase and
the crossover operation. Iannoni and Morabito (2007) embedded hypercube queuing
model into GA to determine the response district for each ambulance in a highway
segment. The hypercube model was applied to evaluate the fitness of each individual
in each generation. Iannoni et al. (2009) introduced a local search procedure into their
algorithm. By applying their hybrid GA in sequence, the location of ambulance along
the highway and the response segments of each ambulance were determined.

3.1.2 TS

TS is a local search method with a unique feature – using a memory or tabu list to
record the solution recently examined. This list avoids testing the same solution in a
given time period. At each iteration, the solution is moved to the best one among its
neighborhood regardless of whether the overall objective value is improved or not.
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By accepting worse solutions, TS can effectively escape from local optima. Arostegui
et al. (2006) and Rajagopalan et al. (2007) conducted studies to compare the per-
formance of main heuristics algorithms including TS, SA and GA in solving facility
location problems. Both of their studies showed that TS could find satisfactory solu-
tions faster with relatively small variability.

Diaz and Rodriguez (1997) developed a simple version of TS to optimize the MCLP.
Gendreau et al. (1997) proposed a TS to optimize the DSM. They combined constraints
in Eqs. 13 and 14 with the objective function in a hierarchical fashion, in case of the
infeasibility of the original problem. The initial population was based on rounded solu-
tions of linear relaxation of the DSM. Gendreau et al. (2001) proposed the DDSMt

and applied parallel TS to provide ambulance deployment schedules in advance for
different scenarios. Rajagopalan et al. (2008) formulated the DACL and developed a
reactive TS with a look-ahead procedure to calculate the number of servers required to
satisfy the coverage constraints quickly. Doerner et al. (2005) modified the objective
function of the DSM, and implemented the TS in Gendreau et al. (2001) to obtain near
optimal solutions.

3.1.3 Other heuristic methods

Unlike the popular GA and TS, other heuristic methods appear to be less commonly
investigated for EMS facility location problems. By applying LR, researchers refor-
mulate models into tractable models. The most common application of LR found
in the literature is to solve the MCLP or its extensions. Galvao and ReVelle (1996)
developed a Lagrangian heuristic for the MCLP. In their algorithm, the objective of
MCLP was changed to be minimizing the minus total coverage. They applied a vertex
addition and substitution heuristics to obtain the upper bound, and built a sub-gradient
optimization algorithm to produce the lower bound. Karasakal and Karasakal (2004)
formulated the MCLP in the presence of partial coverage and developed a solution
procedure based on LR. Jia et al. (2007b) formulated the MCLP with multiple facility
quantity-of-coverage and quality-of-coverage requirements and developed a LR to
solve the model.

The LocAlloc heuristic was proposed by Cooper (1964) to solve location problems.
The procedure of the LocAlloc heuristic is to : (1) choose an initial location for each
ambulance, (2) determine the response area of each ambulance given the locations,
(3) divide the demand points into several groups with at least one ambulance in each
group and find the best ambulance location in each group, and (4) if any of the loca-
tions has changed, repeat this allocation-location process. This heuristics method uses
the property that separating phases of EMS facility location problems makes it more
tractable than combining the phases. Jia et al. (2007b) adapted the LocAlloc heu-
ristic to solve their location problem with multiple facility quantity-of-coverage and
quality-of-coverage requirement. The initial location was obtained from a greedy pro-
cess. Because the demand points need to be served at multiple coverage quality, each
demand point may belong to several groups. Within each group, the demand points are
divided into several subgroups according to the coverage quality they received from
the facility in that group. When relocating the facilities, the corresponding weights for
demand points in each subgroup are considered.
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Galvao et al. (2005) applied SA to optimize the extended MEXCLP and MALP.
The solutions obtained via SA are better than those obtained from vertex substitu-
tion. In Arostegui et al. (2006) and Rajagopalan et al. (2007), simple version of SA is
implemented to solve the MECXLP. Doerner et al. (2005) applied ACO to solve the
extended double coverage model in Eqs. 21–24.

3.2 Simulation

As noted by Marianov and ReVelle (1995), the development of EMS facility location
and relocation models is likely to be parallel with the growth of the information tech-
nologies, and therefore, simulation becomes a more powerful tool to study complex
systems. There are three applications of simulation: (1) provide insight into the imple-
mentation of policies derived from optimal or near optimal solutions, (2) evaluate and
compare performances of different optimization techniques, and (3) combine with
other methods to yield better or faster solutions.

Since the assumptions of existing queuing models usually cannot be satisfied
in practice, some researchers resorted to simulation (Repede and Bernardo 1994).
In their research, the TIMEXCLP was built and incorporated into a decision sup-
port system to assist the planners in deploying ambulances in decision periods. Their
system was implemented as follows: first, the TIMEXCLP was applied based on
the initial information to achieve a certain service level; then by using the output of
the TIMEXCLP as input data, a simulation model was implemented to obtain cov-
erage and response time for each demand point. If the planner was satisfied with
the result this location scheme would be implemented; otherwise, the TIMEXCLP
would be reformulated and this procedure would repeat until satisfactory results were
achieved.

Some researchers integrated simulation techniques with other methods. Maxwell
et al. (2009a) developed a simulation model to analyze the performance of a cur-
rent redeployment policy and incorporated this simulation model into an approximate
dynamic programming procedure to obtain allocation policies. Harewood (2002) cre-
ated a simulation model to verify the optimal solutions, conducted sensitive analy-
sis of different system configurations on performance measures, and compared the
current deployment policy and the one derived from the optimal solution of the
model.

Some simulation models were developed to support decisions on facility loca-
tion and allocation. Fujiwara et al. (1987, 1988) utilized simulation techniques to
develop effective policies for ambulance allocation in Bankok. Liu and Lee (1988)
used simulation to analyze a hospital EMS system in Taipei. Goldberg et al. (1990a)
developed a simulation model to compare two alternative sets of ambulance loca-
tions in Tucson. Zaki et al. (1997) presented a simulation model to optimize the
resource allocation and management policy in Richmond. Henderson and Mason
(2004) used the analysis software named BARTSIM to integrate geographic infor-
mation systems (GIS) into their simulation model, and provided support for deploy-
ment schedule of ambulances. GIS within BARTSIM provided spatial visualization
of different policies.
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3.3 Exact methods

Ambulance location models are mostly formulated as integer programming. The B&B
was usually applied to obtain optimal solutions for small size instances. Swoveland
et al. (1973) combined the B&B technique with simulation to optimize policies for
ambulance services. The outputs of a simulation model were used as an initial solution
in the B&B procedure. Near optimal solutions obtained by the B&B were further val-
idated by simulation models. Mannino and Sassano (1995) used the B&B to solve set
covering problems. Marianov and ReVelle (1994) proposed the QPLSCP and relaxed
it as a linear programming which is solved by the B&B. Similarly, Marianov and
ReVelle (1996) introduced the Q-MALP and used B&B to solve the linear program-
ming relaxation of this model.

4 Conclusion and discussion

With emergencies unfortunately being part of our lives, it is crucial to efficiently plan
and allocate emergency response facilities to deliver effective and timely relief to
people most in need. This paper reviewed covering models and optimization tech-
niques for emergency response facility location and planning, from the perspective
of mathematical models and operations research. The earlier studies of the covering
models are represented by the Location Set Covering Problem (LSCP) and the Maxi-
mal Coverage Location Problem (MCLP). The LSCP is a mandatory covering model
in which all the demand points are covered at least once, while the MCLP attempts
to maximize coverage, given limited resources. Both the LSCP and MCLP have a
common drawback in that once an EMS facility is dispatched to serve an emergency
call, other demands in its coverage area are not covered by it any more. In this con-
text, multiple coverage concept was introduced to handle excess demands in some
locations, such as the recent Double standard Model (DSM) that was proposed to
remedy this situation by allocating facilities among potential sites to provide full cov-
erage within a longer distance standard, and to maximize coverage within a shorter
distance standard. Another strand of research designed to overcome this drawback
is to explicitly model the busy probabilities and reliabilities of facilities. The most
frequently used probabilistic models are the Maximum Expected Covering Location
Problem (MEXCLP) and the Maximum Availability Location Problem (MALP). Fur-
ther research developed hypercube queuing models to relax the strong assumptions
in previous probabilistic models and obtain a more accurate analysis of the system.
Dynamic models were proposed to allocate facilities in real time and provide bet-
ter coverage for demands. Recently, the commonly used “all or nothing” assumption
about the coverage of demands is relaxed by gradual covering models that model the
gradual decline of coverage along with the increase of distance by mathematical func-
tions. In addition, the individual assumption that only the nearest facility determines
whether a demand point is covered or not is relaxed by cooperative covering models.

This paper further summarizes optimization techniques used to solve the above
proposed models, including heuristics, simulation, and exact methods. Genetic Algo-
rithm (GA) and Tabu Search (TS) are the most popular among all heuristics algorithms.
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Heuristic methods are usually applied to solve large scale problems. Although some-
times they cannot provide optimal solutions, they usually yield high quality solutions
in reasonable computational time. Some research developed hybrid versions of heu-
ristic methods by combining some of them. Simulation is used to either evaluate the
performance of polices derived from the solutions obtained via heuristic methods or
combined with heuristic methods to provide solutions with better quality. For small
size instances, optimal or near-optimal solutions can be obtained by exact methods.

By tracing the development of the above various models, we deem the following
research directions are worthy of further research endeavors:

– In previous research, emergency calls or demands were treated as discrete points.
All demands in an area are generated from the weighted center of this area. This
approximation may result in inaccurate representation of real world situations. It
is noteworthy to investigate the possibility of using a continuous area instead of
discrete points for demands generation.

– In reality, emergency calls may have different priorities that require different types
and/or numbers of emergency services/vehicles. It is of interest to integrate the
concept of quality levels as well as priorities in the models.

– Most of the covering models for the EMS facility location and allocation problems
use coverage of emergency calls as an objective. Other criteria such as survival rate
may serve as a better objective that directly reflects the effectiveness of emergency
responses.

– The efficiency of the EMS facility location has been investigated thoughtfully but
the equity on the facility distribution has been overlooked. The public expect fair
access to EMS facilities. Building models to analyze the trade-off between the two
conflicting aspects become necessary.

– The recent advanced geographic information systems (GIS) techniques can be
incorporated into the models, which creates the possibility of using visualization
to evaluate relief efforts and serve as an effective tool for decision makers. The
impacts from other modern techniques/tools such as smart phones and text mes-
saging on emergency relief efforts are yet to be explored.

References

Aickelin U (2002) An indirect genetic algorithm for set covering problems. J Oper Res Soc 53:1118–1126
Alsalloum OI, Rand GK (2003) A goal programming model applied to the ems system at riyadh city, saudi

arabia, working Paper
Alsalloum OI, Rand GK (2006) Extensions to emergency vehicle location models. Comput Oper Res

33:2725–2743
Aly AA, White JA (1978) Probabilistic formulation of the emergency service location problem. J Oper Res

Soc 29:1167–1179
Andersson T (2005) Decision support tools for dynamic fleet management. Ph.D. thesis, Department of

Science and Technology, Linkoepings Universitet, Norrkoeping, Sweden
Andersson T, Vaerband P (2007) Decision support tools for ambulance dispatch and relocation. J Oper Res

Soc 58:195–201
Araz C, Selim H, Ozkarahan I (2007) A fuzzy multi-objective covering-based vehicle location model for

emergency services. Comput Oper Res 34:705–726
Arostegui MA, Kadipasaoglu SN, Khumawala BM (2006) An empirical comparison of tabu search, simu-

lated annealing, and genetic algorithms for facilities location problems. Int J Prod Econ 103:742–754

123



Covering models and optimization techniques for emergency response 307

Aytug H, Saydam C (2002) Solving large-scale maximum expected covering location problems by genetic
algorithms: a comparative study. Eur J Oper Res 141:480–494

Ball M, Lin F (1993) A reliability model applied to emergency service vehicle location. Oper Res 41:18–36
Basar A, Catay B, Unluyurt T (2008) A new model and tabu search approach for planning the emergency

service stations. In: Operations research proceedings
Batta R, Dolan JM, Krishnamurthy NN (1989) The maximal expected covering location problem: revisited.

Transport Sci 23:277–287
Beasley J, Chu P (1996) A genetic algorithm for the set covering problem. Eur J Oper Res 94:392–404
Berman O (1981) Dynamic repositioning of indistinguishable service units on transportation networks.

Transport Sci 15:115–136
Berman O (1981) Repositioning of distinguishable urban service units on networks. Comput Oper Res

8:105–118
Berman O (1981) Repositioning of two distinguishable service vehicles on networks. IEEE Trans Syst Man

Cybernet 11:187–193
Berman O, Krass D (2002) Facility location problems with stochastic demands and congestion. In: Facility

locations: application and theory. Springer, Berlin, pp 329–371
Berman O, Drezner Z, Krass D (2010) Discrete cooperative covering problems. J Oper Res Soc. Advance

online publicatin 15 December 2010
Brandeau M, Larson R (1986) Extending and applying the hypercube queueing model to deploy ambulances

in Boston. TIMS Stud Manage Sci 22:121–153
Brotcorne L, Laporte G, Semet F (2002) Fast heuristics for large scale covering-location problems. Comput

Oper Res 29:651–665
Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. Eur J Oper Res

147(4):451–463
Burwell T (1986) A spatially distributed queuing model for ambulance systems. Ph.D. thesis, Clemson

University, Clemson
Burwell T, Jarvis J, McKnew M (1993) Modeling co-located servers and dispatch ties in the hypercube

model. Comput Oper Res 20:113–119
Ceria S, Nobili P, Sassano A (1998) A lagrangian-based heuristic for large-scale set covering problems.

Math Program 81:215–228
Chan Y (2001) Location theory and decision analysis. South Western College Publishing, Cincinnati
Chung C (1986) Recent applications of the maximal covering location planning (M.C.L.P.) model. J Oper

Res Soc 37:735–746
Church RL, ReVelle CS (1974) The maximum covering location problem. Papers Reg Sci Assoc 32:

101–118
Cooper L (1964) Heuristic methods for location-allocation problems. Soc Indus Appl Math 6:37–53
Cordeau J, Laporte G, Potvin J, Salvesbergh M (2007) Transportation on demand. In: Barnhart C,

Laporte G (eds) Transportation, handbooks in operations research and management science. Else-
vier, Amsterdam pp 429–466

Coskun N, Erol R (2010) An optimization model for locating and sizing emergency medical service stations.
J Med Syst 34:43–49

Daskin M, Stern E (1981) A hierarchical objective set covermg model for emergency medical service
deployment. Tansport Sci 15:137–152

Daskin MS (1983) A maximum expected covering location model: Formulation, properties and heuristic
solution. Trans Sci 17:48–68

Daskin M, Hogan K, ReVelle C (1988) Integration of multiple, excess, backup and expected covering
models. Environ Plan B 15:13–35

Daskin M (1995) Network and discrete location. Wiley, New York
Dessouky M (2006) Rapid distribution of medical supplies. In: Patient flow: reducing delay in healthcare

delivery. Springer, USA, pp 309–339
Diaz B, Rodriguez F (1997) A simple search heuristic for the mclp: Application to the location of ambulance

based in a rural region. Int J Manage Sci 25:181–187
Doerner K, Gutjahr W, Hartl R, Karall M, Reimann M (2005) Heuristic solution of an extended double-

coverage ambulance location problem for austria. Cent Eur J Oper Res 13:325–340
Doerner KF, Hartl RF (2008) Health care logistics, emergency preparedness, and disaster relief: New chal-

lenges for routing problems with a focus on the austrian situation. In: The vehicle rounting problem:
lastest Advances and New Challenges. Springer, USA, pp 527–550

123



308 X. Li et al.

Drezner T, Drezner Z, Goldstein Z (2010) A stochastic gradual cover location problem. Naval Res Logist
57:367–372

Eaton D, Church R, Bennett V, Hamon B, Lopez L (1981) On deployment of health resources in rural valle
del cauca, colombia. TIMS Stud Manage Sci 17:331–359

Eaton D, Daskin M, Simmons D, Bulloch B, Jansma G (1985) Determining emergency medical service
vehicle deployment in austin, texas. Interfaces 15:96–108

Eaton D, Sanchez H, Lantigua R, Morgan J (1986) Determining ambulance deployment in santo domingo,
dominican republic. J Oper Res Soc 37:113–126

Eiselt HA, Marianov V (2009) Gradual location set covering with service quality. Socio Econ Plan Sci
43:121–130

Erkut E, Ingolfsson A, Erdogan G (2007) Ambulance location for maximum survival. Naval Res Logist
55:42–58

Fujiwara O, Makjamroen T, Gupta K (1987) Ambulance deployment analysis: a case study of Bangkok.
Eur J Oper Res 31(1):9–18

Fujiwara O, Kachenchai K, Makjamroen T, Gupta K (1988) An efficient scheme for deployment of ambu-
lances in metropolitan Bangkok. In: Rand GK (ed) Operational research ’87, pp 730–741

Galvao RD, ReVelle C (1996) A lagrangean heuristic for the maximal covering location problem. Eur
J Oper Res 88:114–123

Galvao RD, Chiyoshi FY, Morabito R (2005) Towards unified formulations and extensions of two classical
probabilistic location models. Comput Oper Res 32:15–33

Gendreau M, Laporte G, Semet F (1997) Solving an ambulance location model by tabu search. Location
Sci 5(2):77–88

Gendreau M, Laporte G, Semet F (2001) A dynamic model and parallel tabu search heuristic for real-time
ambulance relocation. Parallel Comput 27:1641–1653

Gendreau M, Laporte G, Semet F (2006) The maximal expected coverage relocation problem for emergency
vehicles. J Oper Res Soc 57:22–28

Geroliminis N, Karlaftis M, Skabardonis A (2006) A generalized hypercube queueing model for locating
emergency response vehicles in urban transportation networks. TRB 2006 Annual Meeting CD-ROM

Geroliminis N, Karlaftis M, Stathopoulos A, Kepaptsoglou K (2004) A districting and location model using
spatial queues. TRB 2004 Annual Meeting CD-ROM

Goldberg J (2004) Operations research models for the deployment of emergency services vehicles. EMS
Manage J 1:20–39

Goldberg J, Dietrich R, Chen J, Mitwasi M, Valenzuela T, Criss E (1990) A simulation model for valuating
a set of emergency vehicle base location: development, validation, and usage. Socio Econ Plan Sci
24:125–141

Goldberg J, Dietrich R, Chen J, Mitwasi M, Valenzuela T, Criss E (1990) Validating and applying a model
for locating emergency medical vehicles in tucson, az. Eur J Oper Res 49:308–324

Goldberg J, Szidarovszky F (1991) Methods for solving nonlinear equations used in evaluating vehicle busy
probabilities. Oper Res 39:903–916

Green L, Kolesar P (2004) Improving emergency responsiveness with management science. Manage Sci
50:1001–1014

Harewood S (2002) Emergency ambulance deployment in barbados: a multi-objective approach. J Oper
Res Soc 53:185–192

Henderson S, Mason A (2004) Ambulance service planning: simulation and data visualization. In: Opera-
tions research and health care: a handbook of methods and applications. Kluwer, Boston, pp 77–102

Hogan K, ReVelle C (1986) Concepts and applications of backup coverage. Manage Sci 32:1434–1444
Iannoni AP, Morabito R (2007) A multiple dispatch and partial backup hypercube queuing model to analyze

emergency medical systems on highways. Trans Res Part E 43:755–771
Iannoni AP, Morabito R, Saydam C (2008) A hypercube queueing model embedded into a genetic algorithm

for ambulance depolyment on highways. Ann Oper Res 157:207–224
Iannoni AP, Morabito R, Saydam C (2009) An optimization approach for ambulance location and the

districting of the response segments on highways. Eur J Oper Res 195:528–542
Jaramillo J, Bhadury J, Batta R (2002) On the use of genetic algorithms to solve location problems. Comput

Oper Res 29:761–779
Jarvis JP (1985) Approximating the equilibrium behavior of multi-server loss systems. Manage Sci 32:

235–239

123



Covering models and optimization techniques for emergency response 309

Jia H, Ordonez F, Dessouky MM (2007) A modeling framework for facility location of medical service for
large-scale emergency. IIE Trans 39(1):35–41

Jia H, Ordonez F, Dessouky MM (2007) Solution approaches for facility location of medical supplies for
large-scale emergecies. Comput Indus Eng 52(1):257–276

Karasakal O, Karasakal EK (2004) A maximal covering location model in the presence of partial coverage.
Comput Oper Res 31:1515–1526

Laporte G, Louveaux FV, Semet F, Thirion A (2009) Application of the double standard model for ambu-
lance location. In: Innovations in distribution logistics. Springer, Berlin, pp 235–249

Larson R, Odoni A (1981) Urban operations research. Prentice-Hall, Englewood Cliffs
Larson RC (1974) A hypercube queuing model for facility location and redistricting in urban emergency

services. Comput Oper Res 1:67–95
Larson RC (1975) Approximating the performance of urban emergency service systems. Oper Res 23:

845–867
Liu M, Lee J (1988) A simulation of a hospital emergency call system using slam ii. Simulation 51:216–221
Mannino C, Sassano A (1995) Solving hard set covering problem. Oper Res Lett 18:1–5
Marianov V, ReVelle C (1994) The queuing probabilistic location set covering problem and some exten-

sions. Socio Econ Plan Sci 28:167–178
Marianov V, ReVelle C (1995) Sitting emergency services. In: Facility location: a survey of appication and

methods. Springer, New York, pp 199–223
Marianov V, ReVelle C (1996) The queueing maximal availability locationm problem: a model for the

siting of emergency vehicles. Eur J Oper Res 93(1):110–120
Marianov V, Serra D (1998) Probabilistic maximal covering location allocation models for congested

systems. J Reg Sci 38:401–424
Marianov V, Serra D (2002) Location problems in the public sector. In: Facility locations: application and

theory. Springer, Berlin, pp 119–150
Maxwell MS, Henderson SG, Topalogu H (2009a) Ambulance redeployment: an approximate dynamic pro-

gramming approach. In: Rossetti MD, Hill RR, Johansson B, Dunkin A, Ingalls R (eds) Proceedings
of 2009 winter simulation conference

Maxwell MS, Restrepo M, Henderson SG, Topaloglu H (2009b) Approximate dynamic programming for
ambulance redeployment (to appear)

McKnew MA (1983) An approximation to the hypercube model with patrol initiated activities: an applica-
tion to police. Decis Sci 14:408–418

McLay LA (2009) A maximum expected covering location model with two types of servers. IIE Trans
41:730–741

Mendonca FC, Morabito R (2001) Analysing emergency medical service ambulance deployment on a bra-
zilian highway using the hypercube model. J Oper Res Soc 52:261–270

Nair R, Miller-Hooks E (2006) A case study of ambulance location and relocation. Presentation in
INFORMS Annual Meeting, Pittsburgh Pennsylvania

Ohlsson M, Peterson C, Soderberg B (2001) An efficient mean field approach to the set covering problem.
Eur J Oper Res 133:583–595

Owen S, Daskin M (1998) Strategic facility location: a review. Eur J Oper Res 111:423–447
Rajagopalan HK, Saydam C (2005) An effective and accurate hybrid meta heuristic for a probabilistic

coverage location problem for dynamic deployment. In: Proceedings of 35th international coference
on computers and industrial engineering

Rajagopalan HK, Saydam C, Xiao J (2005) A multiperiod expected covering location model for dynamic
redeployment of ambulances. In: Proceedings of the joint conference-10th EWGT meeting and 16th
Mini-EURO conference, Poznan, Poland

Rajagopalan HK, Saydam C, Xiao J (2008) A multiperiod set covering location model for dynamic rede-
ployment of ambulances. Comput Oper Res 35:814–826

Rajagopalan HK, Vergara FE, Saydam C, Xiao J (2007) Developing effective meta-heuristics for a proba-
bilistic location model via experimental design. Eur J Oper Res 177:83–101

Repede JF, Bernardo JJ (1994) Developing and validating a decision support system for locating emergenct
medical vehicles in louisville kentucky. Eur J Oper Res 75(5):567–581

Restrepo M (2008) Computational methods for static allocation and real-time redeployment of ambulances.
Ph.D. thesis, Cornell University, Ithaca, New York

ReVelle C (1989) Review, extension and prediction in emergency siting models. Eur J Oper Res 40:58–69

123



310 X. Li et al.

ReVelle C (1991) Siting ambulances and fire companies: new tools for planners. J Am Plan Assoc 57:
471–484

ReVelle C, Hogan K (1989) The maximum availability location problem. Trans Sci 23:192–200
ReVelle C, Hogan K (1989) The maximum reliability location problem and alpha reliable p-center prob-

lems: derivatives of the probabilistic location set covering problem. Ann Oper Res 18:155–174
Saydam AC, McKnew MA (1985) A separable programming approach to expected coverage: an application

to ambulance location. Decis Sci 16:381–398
Saydam C, Aytug H (2003) Accurate estimation of expected coverage: revisited. Socio Econ Plan Sci

37:69–80
Schilling D (1980) Dynamic location modeling for public-sector facilities: a multicriteria approach. Decis

Sci 11:714–724
Schilling D, Elzinga D, Cohon J, Church RL, ReVelle C (1979) The teem/fleet models for simultaneous

facility and equipment sitting,. Trans Sci 13:163–175
Schilling D, Jayaraman V, Barkhi R (1993) A review of covering problems in facility location. Locat Sci

1:25–55
Scott A (1971) Dynamic location-allocation systems: some basic planning strategies. Environ Plan 3:73–82
Shiah D-M, Chen S-W (2007) Ambulance allocation capacity model. In: e-Health networking, applications

and services, 2007 9th international conference, Taipei,Taiwan
Sorensen P, Church R (2010) Integrating expected coverage and local reliability for emergency medical

services location problems. Socio Econ Plan Sci 44:8–18
Swoveland C, Uyeno D, Vertinsky I, Vickson R (1973) A simulation-based methodology for optimization

of ambulance service policies. Socio Econ Plan Sci 7:697–703
Takeda RA, Widmer JA, Morabito R (2007) Analysis of ambulance decentralization in an urban emergency

medical service using the hypercube queueing model. Comput Oper Res 34:727–741
Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. Oper Res

19:1363–1373
Wesolowsky G, Truscott W (1976) The multiperiod location-allocation problem with relocation of facilities.

Manage Sci 22:57–65
Zaki A, Cheng H, Parker B (1997) A simulation model for the analysis and management of an emergency

service system. Socio Econ Plan Sci 31:173–189
Zhang O, Mason AJ, Philpott AB (2008) Simulation and optimisation for ambulance logistics and relocation.

Presentation in INFORMS Annual Meeting, Washington, DC

123


	Covering models and optimization techniques for emergency response facility location and planning: a review
	Abstract
	1 Introduction
	2 Covering models for emergency facility location and planning
	2.1 Location set covering problem
	2.2 Maximal covering location problem
	2.3 Double standard model (DSM)
	2.4 Maximum expected covering location problem (MEXCLP)
	2.5 Hypercube queuing model
	2.6 Maximum availability location problem (MALP)
	2.7 Dynamic allocation and relocation models
	2.8 Gradual coverage model
	2.9 Cooperative coverage model

	3 Optimization techniques
	3.1 Heuristics
	3.1.1 GA
	3.1.2 TS
	3.1.3 Other heuristic methods

	3.2 Simulation
	3.3 Exact methods

	4 Conclusion and discussion
	References


